ABSRACT OF LECTURE IN HONOR OF RAMIREZ ARELLANO title: SOLUTIONS OF PDE'S AND RESOLUTIONS OF SIGULARITIES

J. J. Kohn

This lecture is concerned with the relationship between the operator ∂ and the study of the singularities of complex analytic varieties. Let $V \subset \mathbb{C}^n$ be the variety defined by $h_1 = \cdots = h_n = 0$ wit the h_i holomorphic functions in a neighborhood of the origin in \mathbb{C}^n . Let r be the function in a neighborhood of the origin in \mathbb{C}^{n+1} defined by:

$$r(z_1,\ldots,z_{n+1}) = Re(z_{n+1}) + \sum_{1}^{n} |h_\ell(z_1,\ldots,z_n)|^2.$$

Let $M' \subset \mathbb{C}^{n+1}$ be a comlex analytic manifold with a smooth boundary M so that, in a neighborhood of $P \in M$ P, the origin of \mathbb{C}^{n+1} , M is given by r = 0 and M' by $r \ge 0$. Let $u \in L_2(M)$ and le α be (0, 1)-form with square integrable coefficients. Suppose that u is orthogonal to the space of square integrable functions and that $\bar{\partial}_b u = \alpha$. Then, near the origin, u is always "smoother" then α if and only if V = 0. The talk is concerned with ways to study this behavior by analyzing the singularity of V at 0. D'Angelo developed a theory of type of holomorphic curves through the origin with r = 0 in which the type is ∞ if and only if $\dim V = 0$ and Catlin proved that the above u is always "smoother" then α if and only if the D'Angelo order is finite. More precisely smoothness at 0 is measured by Sobolev norms of germs at 0, so that it means that there exists $\varepsilon > 0$ so that

$$\|\alpha\|_s < \infty \Rightarrow \|u\|_{s+\varepsilon} < \infty.$$

Another approach to this question is via the ideal type. That is if $z : \mathbb{C} \to \mathbb{C}^{n+1}$, $z(t) = (z_1(t), \ldots, z_{n+1}(t))$, is a germ off a holomorphic curve at 0 in V we have: $h_{\ell}(z(t)) = 0$ for small t. Hence $z_{n+1}(t) = 0$ and

$$\frac{\partial h_{\ell}}{\partial t} = \sum_{i}^{n} h_{\ell z_{i}} z_{i}'(t) = 0$$

for t near 0. Hence $det(h_{\ell z_i})(t) = 0$. Terefore $1 \neq (det(h_{\ell z_i}))$ and $1 \neq \sqrt[k]{(det(h_{\ell z_i}))}$ for $k \in \mathbb{Z}^+$. So that starting with the ideal $I^1 = (det(h_{\ell z_i}))$ we construct a set of ideals: $\{I^{a_1,b_1,\ldots,a_N,b_N}\}$ by successively taking a_i Jacobians and b_i roots. Then dimV > 0 if and only if one of these ideals contains 1. If $f \in I^{a_1,b_1,\ldots,a_N,b_N}$ then f is a subelliptic multiplier, in the sense that $||fu||_{s+\varepsilon} \leq C_s ||\alpha||_s$ where $\varepsilon > 0$ depends on a_1,\ldots,b_N . Siu and Kim-Zaitsev proved that $\dim V = 0$ there exists an effective algorithm (that is, a choice of the a's and b's with $1 \in I^{a_1,b_1,\ldots,a_N,b_N}$ such that N depends only on the D'Angelo type. Here we will go beyond subelliptic estimates to discuss Hölder and L_p estimates for this we will need optimal microlocal estimates. We will discuss these and analyze the special case $h_\ell(z_1,\ldots,z_n) = g_{\ell-1}(z_1,\ldots,z_{\ell-1}) + f_\ell(z_\ell)$ for $\ell = 1,\ldots,n$ and $g_0 = 0$.